Loading [Contrib]/a11y/accessibility-menu.js

This website uses cookies

We use cookies to enhance your experience and support COUNTER Metrics for transparent reporting of readership statistics. Cookie data is not sold to third parties or used for marketing purposes.

Skip to main content
biogenomes
  • Menu
  • Articles
    • Genome Sequencing
    • All
  • For Authors
  • Editorial Board
  • About
  • Open Access
  • Peer Review
  • search
  • RSS feed (opens a modal with a link to feed)

RSS Feed

Enter the URL below into your favorite RSS reader.

https://biodiversitygenomes.scholasticahq.com/feed
ISSN 2687-7945
Genome Sequencing
November 11, 2025 EDT

The complete genome sequence of the Acestrorhamphid Psalidodon fasciatus

Luz E. De la Ossa-Guerra, Stacy Pirro, Roberto F. Artoni, Waldir M. Berbel-Filho,
https://doi.org/10.56179/001c.147128
biogenomes
De la Ossa-Guerra, Luz E., Stacy Pirro, Roberto F. Artoni, and Waldir M. Berbel-Filho. 2025. “The Complete Genome Sequence of the Acestrorhamphid Psalidodon Fasciatus.” Biodiversity Genomes, November. https:/​/​doi.org/​10.56179/​001c.147128.
Download all (1)
  • Figure 1. Specimen of Psalidodon fasciatus. Scale bar: 1cm (Photo: Kerniske et al. 2021)
    Download

Sorry, something went wrong. Please try again.

If this problem reoccurs, please contact Scholastica Support

Error message:

undefined

View more stats

Abstract

We present the first genome assembly of Psalidodon fasciatus, a rheophilic fish recently classified within Acestrorhamphidae and distributed across major South American river basins. Known for its karyotypic diversity and cryptic speciation potential, P. fasciatus was sequenced using Illumina Hi-Seq and assembled with SPAdes and Zanfona, resulting in 471,706 scaffolds at 60× coverage. The assembled genome is available in GenBank (Assembly ID: ASM5207532v1) and provides a valuable resource for evolutionary and taxonomic studies in Brazilian ichthyofauna.

Introduction

Psalidodon fasciatus (Cuvier, 1819) is a rheophilic species recently placed within the family Acestrorhamphidae (Terán, Benitez, and Mirande 2020; Melo et al. 2024) with a distribution spanning the Paraná, Paraguay, and Uruguay river basins, as well as the northeastern region of the São Francisco River basin (Melo et al. 2024) (Figure 1). As with this genus and others such as Astyanax, the taxonomic classification of its individuals has proven challenging (Pazza et al. 2008), leading to several phylogenetic reclassifications (Castro et al. 2014; Rossini et al. 2016; Terán, Benitez, and Mirande 2020; Goes et al. 2022; Garduño-Sánchez et al. 2023).

An important area of research involving P. fasciatus concerns speciation and population dynamics (Peres et al. 2009; Ferreira-Neto et al. 2012; Matoso et al. 2013; Penteado, Kavalco, and Pazza 2013; Kavalco et al. 2016). The presence of populations with distinct chromosomal and morphological patterns across different hydrographic basins suggests that the species may represent a complex of cryptic species still undergoing differentiation (Artoni et al. 2006).

In genetics, P. fasciatus has been used in studies focusing on karyotypic and chromosomal variation. Several studies indicate that this species exhibits significant genetic polymorphisms, with variations in chromosome number and structure among populations, suggesting a high evolutionary potential (Pazza and Kavalco 2007; Pansonato-Alves et al. 2013; Goes et al. 2022). Here, we present the first genome assembly of Psalidodon fasciatus, highlighting its potential as a new model organism for research on Brazilian ichthyofauna.

Figure 1
Figure 1.Specimen of Psalidodon fasciatus. Scale bar: 1cm (Photo: Kerniske et al. 2021)

Methods

We collected the sample tissue from an individual collected in the sinkhole 2 of the State Park of Vila Velha, Ponta Grossa, Brazil (-25°13’28.002"S, -50°2’27.6072"W) under authorization by Chico Mendes for Biodiversity and Conservation (ICMBIO—SISBIO—license number 15115-1), and the experimental procedures were approved by the Ethics Committee on the use of the Animals for Research at (CEUA Process number 0769342/2021). The use of the genetic data in this study was authorized by the National System for the Management of Genetic Heritage and Associated Traditional Knowledge (SISGEN number A6F96AE).

DNA extraction was performed with the Qiagen DNAeasy Genomic Extraction Kit using a standard process. A paired-end sequencing library was constructed using the Illumina TruSeq kit, according to the manufacturer’s instructions. The library was sequenced on an Illumina Hi-Seq platform in a paired-end, 2 × 150bp format. The resulting fastq files were trimmed of adapter/primer sequences and low-quality regions using Trimmomatic v0.33 (Bolger, Lohse, and Usadel 2014). The trimmed sequence was assembled using SPAdes v2.5 (Bankevich et al. 2012) followed by a final step using Zanfona (Kieras, O’Neill, and Pirro 2021). Genome assembly completeness was evaluated with BUSCO v6 (Manni et al. 2021; Tegenfeldt et al. 2025).

Results and availability

The genome assembly resulted in 471,706 scaffolds with a coverage depth of 60X (Table 1). All raw sequencing data and the assembled genome of Psalidodon fasciatus are available in the GenBank database (Assembly ID: ASM5207532v1).

Table 1.Genome assembly statistics
Voucher number JSSB7SIPGJ-Furna
Raw Data SRR33069403
Assembled Genome ASM5207532v1
No. of scaffolds 471,706
No. of base pairs 1,316,875,484
N50 23 kbp
L50 23,730
GC content (%) 38
Average genome coverage 60x
BUSCO scores Actinopterygii
C:45.7% [S:45.2%, D:0.4%], F:21.7%, M:32.7%, n:3640, E:15.3%

Funding

Funding was provided by Iridian Genomes, grant# IRGEN_RG_2021-1345 Genomic Studies of Eukaryotic Taxa.

Acknowledgments

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (Grant proc. no. 308748/2021- 2) and Fundação Araucária de Apoio ao Desenvolvimento Científico e Tecnológico do Paraná – NAPI-Bioinformatics (Agreement no. 033/2021).

Submitted: November 07, 2025 EDT

Accepted: November 11, 2025 EDT

References

Artoni, R. F., O. A. Shibatta, M. C. Gross, C. H. Schneider, M. C. de Almeida, M. R. Vicari, et al. 2006. “Astyanax ⁠aff. ⁠fasciatus Cuvier, 1819 (Teleostei; Characidae): Evidences of a Species Complex in the Upper Rio Tibagi Basin (Paraná, Brazil).” Neotropical Ichthyology 4.
Google Scholar
Bankevich, Anton, Sergey Nurk, Dmitry Antipov, Alexey A. Gurevich, Mikhail Dvorkin, Alexander S. Kulikov, Valery M. Lesin, et al. 2012. “SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing.” Journal of Computational Biology 19 (5): 455–77. https:/​/​doi.org/​10.1089/​cmb.2012.0021.
Google Scholar
Bolger, A. M., M. Lohse, and B. Usadel. 2014. “Trimmomatic: A Flexible Trimmer for Illumina Sequence Data.” Bioinformatics 30:2114.
Google Scholar
Castro, J. P., M. O. Moura, O. Moreira-Filho, O. A. Shibatta, M. H. Santos, V. Nogaroto, et al. 2014. “Evidence of Incipient Speciation in Astyanax ⁠scabripinnis Species Complex (Teleostei: Characidae).” Neotropical Ichthyology 12:429–38.
Google Scholar
Ferreira-Neto, M., R. F. Artoni, M. R. Vicari, O. Moreira-Filho, J. P. M. Camacho, M. Bakkali, et al. 2012. “Three Sympatric Karyomorphs in the Fish Astyanax ⁠fasciatus (Teleostei, Characidae) Do Not Seem to Hybridize in Natural Populations.” Comp Cytogenet 6:29–40.
Google Scholar
Garduño-Sánchez, M., J. Hernández-Lozano, R. L. Moran, R. Miranda-Gamboa, J. B. Gross, N. Rohner, et al. 2023. “Phylogeographic Relationships and Morphological Evolution between Cave and Surface Astyanax ⁠mexicanus Populations (De Filippi 1853) (Actinopterygii, Characidae).” Mol Ecol 32:5626–44.
Google Scholar
Goes, C. A. G., R. Z. dos Santos, W. R. C. Aguiar, D. C. V. Alves, D. M. Z. de A. Silva, F. Foresti, et al. 2022. “Revealing the Satellite DNA History in Psalidodon and Astyanax Characid Fish by Comparative Satellitomics.” Front Genet 13. https:/​/​doi.org/​10.3389/​fgene.2022.884072.
Google ScholarPubMed CentralPubMed
Kavalco, K. F., R. Pazza, K. D. O. Brandão, C. Garcia, L. A. C. Bertollo, and L. F. De Almeida-Toledo. 2016. “Chromosomal Diversification Higher Than Molecular Variation in Astyanax ⁠aff. ⁠fasciatus (Teleostei, Characidae).” Zebrafish 13:345–53.
Google Scholar
Kerniske, F. F., J. P. Castro, L. E. D. L. Ossa-Guerra, B. A. Mayer, V. Abilhoa, I. D. P. Affonso, and R. F. Artoni. 2021. “Spinal Malformations in a Naturally Isolated Neotropical Fish Population.” PeerJ 9. https:/​/​doi.org/​10.7717/​peerj.12239.
Google Scholar
Kieras, M., K. O’Neill, and S. Pirro. 2021. “Zanfona, a Genome Assembly Finishing Tool for Paired-End Illumina Reads.” 2021. https:/​/​github.com/​zanfona734/​zanfona.
Manni, M., M. R. Berkeley, M. Seppey, F. A. Simão, and E. M. Zdobnov. 2021. “BUSCO Update: Novel and Streamlined Workflows along with Broader and Deeper Phylogenetic Coverage for Scoring of Eukaryotic, Prokaryotic, and Viral Genomes.” Mol Biol Evol 38:4647–54.
Google Scholar
Matoso, D. A., M. da Silva, R. F. Artoni, and R. A. Torres. 2013. “Molecular Taxonomy and Evolutionary Hypothesis Concerning Astyanax ⁠fasciatus (Characiformes, Characidae) from Vila Velha State Park and Tibagi and Iguaçu Rivers.” Genetics and Molecular Research 12:631–38.
Google Scholar
Melo, B. F., R. P. Ota, R. C. Benine, F. R. Carvalho, F. C. T. Lima, G. M. T. Mattox, et al. 2024. “Phylogenomics of Characidae, a Hyper-Diverse Neotropical Freshwater Fish Lineage, with a Phylogenetic Classification Including Four Families (Teleostei: Characiformes).” Zool J Linn Soc 202. https:/​/​doi.org/​10.1093/​zoolinnean/​zlae101.
Google Scholar
Pansonato-Alves, J. C., A. W. S. Hilsdorf, R. Utsunomia, D. M. Z. A. Silva, C. Oliveira, and F. Foresti. 2013. “Chromosomal Mapping of Repetitive DNA and Cytochrome C Oxidase I Sequence Analysis Reveal Differentiation among Sympatric Samples of Astyanaxfasciatus (Characiformes, Characidae).” Cytogenet Genome Res 141:133–42.
Google Scholar
Pazza, R., and K. F. Kavalco. 2007. “Chromosomal Evolution in the Neotropical Characin Astyanax (Teleostei, Characidae).” The Nucleus 50 (3): 519–43.
Google Scholar
Pazza, R., S. A. F. Kavalco, P. R. Penteado, K. F. Kavalco, and L. F. De Almeida-Toledo. 2008. “The Species Complex Astyanax ⁠f⁠asciatus Cuvier (Teleostei, Characiformes) - A Multidisciplinary Approach.” J Fish Biol 72:2002–10.
Google Scholar
Penteado, P. R., K. F. Kavalco, and R. Pazza. 2013. “Um terceiro citótipo de Astyanax aff. fasciatus (Teleostei, Characidae) da bacia do rio São Francisco.” Evolução e Conservação da Biodiversidade 4:1–7.
Google Scholar
Peres, W. A. M., P. A. Buckup, D. L. Z. Kantek, L. A. C. Bertollo, and O. Moreira-Filho. 2009. “Chromosomal Evidence of Downstream Dispersal of Astyanax ⁠fasciatus (Characiformes, Characidae) Associated with River Shed Interconnection.” Genetica 137:305–11.
Google Scholar
Rossini, B. C., C. A. M. Oliveira, F. A. G. de Melo, V. de A. Bertaco, J. M. D. de Astarloa, J. J. Rosso, et al. 2016. “Highlighting Astyanax Species Diversity through DNA Barcoding.” Edited by S. Rétaux. PLoS One 11:e0167203.
Google Scholar
Tegenfeldt, F., D. Kuznetsov, M. Manni, M. Berkeley, E. M. Zdobnov, and E. V. Kriventseva. 2025. “OrthoDB and BUSCO Update: Annotation of Orthologs with Wider Sampling of Genomes.” Nucleic Acids Res 53:D516–22.
Google Scholar
Terán, G. E., M. F. Benitez, and J. M. Mirande. 2020. “Opening the Trojan Horse: Phylogeny of Astyanax, Two New Genera and Resurrection of Psalidodon (Teleostei: Characidae).” Zool J Linn Soc 190:1217–34.
Google Scholar

Powered by Scholastica, the modern academic journal management system